The Influence of Local Original Income, Unemployment and Gini Ratio on Poverty Levels in West Nusa Tenggara Province 2019-2023

Authors

  • Hary Anggara Program Studi Ilmu Ekonomi Studi Pembangunan, Fakultas Ekonomi dan Bisnis, Universitas Mataram, Indonesia Author
  • Siti Sriningsih Program Studi Ilmu Ekonomi Studi Pembangunan, Fakultas Ekonomi dan Bisnis, Universitas Mataram, Indonesia Author
  • Ahmad Zaenal Wafik Program Studi Ilmu Ekonomi Studi Pembangunan, Fakultas Ekonomi dan Bisnis, Universitas Mataram, Indonesia Author

DOI:

https://doi.org/10.59535/d3kt4335

Keywords:

Local Original Income, Unemployment, Gini Ratio, Poverty Level

Abstract

This study aims to analyze the Influence of Local Original Income (X1) Unemployment (X2) and Gini Ratio on Poverty Level in West Nusa Tenggara Province in 2019-2023. The data used are secondary data obtained from the Central Statistics Agency (BPS) of NTB Province, and analyzed using the panel data regression method. The results of the study partially show that local original income (X1) has a positive and insignificant effect on the poverty level (Y) of West Nusa Tenggara Province in 2019-2023. unemployment (X2) has a negative and significant effect on the poverty level (Y) of West Nusa Tenggara Province in 2019-2023 and the Gini ratio (X3) has a positive and significant effect on the poverty level (Y). While simultaneously the variables of local original income (X1) unemployment (X2) and the Gini ratio simultaneously affect the poverty level (Y) of West Nusa Tenggara Province in 2019-2023.

References

[1] P. Susanti and R. Sari, ‘Government Responsibility for The Fulfillment Basic Rights of Unprosperous people In Education Sector’, Substantive Justice International Journal of Law, vol. 4, no. 1, Art. no. 1, Jun. 2021, doi: 10.33096/substantivejustice.v4i1.106.

[2] S. Husni, M. Yusuf, M. Nursan, and A. F. U. Fr, ‘Study of household welfare level of crab fishermen using Fisherman Exchange Rate (FER) indicators in East Lombok’, IOP Conf. Ser.: Earth Environ. Sci., vol. 1107, no. 1, p. 012112, Dec. 2022, doi: 10.1088/1755-1315/1107/1/012112.

[3] M. Pérez-Escolar and F. Canet, ‘Research on vulnerable people and digital inclusion: toward a consolidated taxonomical framework’, Univ Access Inf Soc, vol. 22, no. 3, pp. 1059–1072, Aug. 2023, doi: 10.1007/s10209-022-00867-x.

[4] C. Cintron et al., ‘Enriching tuberculosis research by measuring poverty better: a perspective’, BMC Glob. Public Health, vol. 3, no. 1, p. 17, Feb. 2025, doi: 10.1186/s44263-025-00127-z.

[5] Y. Guo and Y. Liu, ‘Sustainable poverty alleviation and green development in China’s underdeveloped areas’, J. Geogr. Sci., vol. 32, no. 1, pp. 23–43, Jan. 2022, doi: 10.1007/s11442-021-1932-y.

[6] I. O. M. Cristina, C. Nicoleta, D. R. Cătălin, and F. Margareta, ‘Regional Development in Romania: Empirical Evidence Regarding the Factors for Measuring a Prosperous and Sustainable Economy’, Sustainability, vol. 13, no. 7, Art. no. 7, Jan. 2021, doi: 10.3390/su13073942.

[7] R. Nopiah, ‘Determinants of Economic Welfare of Persons with Disabilities in Bengkulu Province’, Socio-Economic and Humanistic Aspects for Township and Industry, vol. 2, no. 2, Art. no. 2, May 2024, doi: 10.59535/sehati.v2i2.261.

[8] I. Febriani, W. Wahyunadi, and E. Agustiani, ‘The Effect of Education Expenditure, Health Expenditure, and Social Assistance Expenditure on Poverty in NTB Province 2013-2022’, Socio-Economic and Humanistic Aspects for Township and Industry, vol. 1, no. 3, Art. no. 3, Dec. 2023, doi: 10.59535/sehati.v1i3.160.

[9] A. Di Nallo, O. Lipps, D. Oesch, and M. Voorpostel, ‘The effect of unemployment on couples separating in Germany and the UK’, Journal of Marriage and Family, vol. 84, no. 1, pp. 310–329, 2022, doi: 10.1111/jomf.12803.

[10] M. Lian, L. Chen, C. Hui, F. Zhu, and P. Shi, ‘On the Relationship Between the Gini Coefficient and Skewness’, Ecology and Evolution, vol. 14, no. 12, p. e70637, 2024, doi: 10.1002/ece3.70637.

[11] H. Xia, R. Yin, T. Xia, B. Zhao, and B. Qiu, ‘People-Oriented: A Framework for Evaluating the Level of Green Space Provision in the Life Circle from a Supply and Demand Perspective: A Case Study of Gulou District, Nanjing, China’, Sustainability, vol. 16, no. 3, Art. no. 3, Jan. 2024, doi: 10.3390/su16030955.

[12] S. Sriningsih, T. Haryanto, and A. Solihin, ‘Determinants of Spending Efficiency for Education and Health Functions’, JEJAK: Jurnal Ekonomi dan Kebijakan, vol. 17, no. 1, Art. no. 1, Jun. 2024, Accessed: Apr. 22, 2025. [Online]. Available: https://journal.unnes.ac.id/journals/jejak/article/view/5620

[13] L. Purwati, M. Afifi, and S. Sriningsih, ‘Complex Interaction Analysis: Labor Force Participation, Education, Unemployment, Health, and Poverty on Economic Growth in Nusa Tenggara Barat’, Socio-Economic and Humanistic Aspects for Township and Industry, vol. 1, no. 4, Art. no. 4, Dec. 2023, doi: 10.59535/sehati.v1i4.169.

[14] A. Purwanto, ‘Education Research Quantitative Analysis for Little Respondents: Comparing of Lisrel, Tetrad, GSCA, Amos, SmartPLS, WarpPLS, and SPSS’, Jul. 16, 2021, Social Science Research Network, Rochester, NY: 3982756. Accessed: Apr. 21, 2025. [Online]. Available: https://papers.ssrn.com/abstract=3982756

[15] K. De Groot, A. J. E. De Veer, A. M. Munster, A. L. Francke, and W. Paans, ‘Nursing documentation and its relationship with perceived nursing workload: a mixed-methods study among community nurses’, BMC Nurs, vol. 21, no. 1, p. 34, Jan. 2022, doi: 10.1186/s12912-022-00811-7.

[16] A. Rahali and M. A. Akhloufi, ‘End-to-End Transformer-Based Models in Textual-Based NLP’, AI, vol. 4, no. 1, Art. no. 1, Mar. 2023, doi: 10.3390/ai4010004.

[17] E. Hedman-Lagerlöf, P. Carlbring, F. Svärdman, H. Riper, P. Cuijpers, and G. Andersson, ‘Therapist-supported Internet-based cognitive behaviour therapy yields similar effects as face-to-face therapy for psychiatric and somatic disorders: an updated systematic review and meta-analysis’, World Psychiatry, vol. 22, no. 2, pp. 305–314, 2023, doi: 10.1002/wps.21088.

[18] Z. Yu, M. Guindani, S. F. Grieco, L. Chen, T. C. Holmes, and X. Xu, ‘Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research’, Neuron, vol. 110, no. 1, pp. 21–35, Jan. 2022, doi: 10.1016/j.neuron.2021.10.030.

[19] J. Rahnenführer et al., ‘Statistical analysis of high-dimensional biomedical data: a gentle introduction to analytical goals, common approaches and challenges’, BMC Med, vol. 21, no. 1, p. 182, May 2023, doi: 10.1186/s12916-023-02858-y.

[20] N. Balasoiu, I. Chifu, and M. Oancea, ‘Impact of Direct Taxation on Economic Growth: Empirical Evidence Based on Panel Data Regression Analysis at the Level of Eu Countries’, Sustainability, vol. 15, no. 9, Art. no. 9, Jan. 2023, doi: 10.3390/su15097146.

[21] D. Neupane, ‘Trade Openness and Economic Growth of Nepal: An Econometric Analysis’, Journal of Business and Management, vol. 7, no. 02, Art. no. 02, Dec. 2023, doi: 10.3126/jbm.v7i02.62585.

[22] C. Mussida and D. Sciulli, ‘Being poor and being NEET in Europe: Are these two sides of the same coin?’, J Econ Inequal, vol. 21, no. 2, pp. 463–482, Jun. 2023, doi: 10.1007/s10888-022-09561-7.

[23] B. Aderounmu, Azuh ,Dominic, Onanuga ,Olaronke, Oluwatomisin ,Ogundipe, Ebenezer ,Bowale, and A. and Azuh, ‘Poverty drivers and Nigeria’s development: Implications for policy intervention’, Cogent Arts & Humanities, vol. 8, no. 1, p. 1927495, Jan. 2021, doi: 10.1080/23311983.2021.1927495.

[24] D. Hörcher and D. J. Graham, ‘The Gini index of demand imbalances in public transport’, Transportation, vol. 48, no. 5, pp. 2521–2544, Oct. 2021, doi: 10.1007/s11116-020-10138-4.

[25] L. Mookodi, ‘Decomposition analysis of the Gini coefficient of consumer expenditures in Botswana’, Development Southern Africa, vol. 38, no. 4, pp. 622–642, Jul. 2021, doi: 10.1080/0376835X.2021.1912587.

Downloads

Published

2025-04-22

Issue

Section

Original Articles

Most read articles by the same author(s)